
MAKER as a Service:
Moving HPC applications to Jetstream Cloud

Nicholas Hazekamp∗, Upendra Kumar Devisetty‡, Nirav Merchant†, and Douglas Thain∗
∗Department of Computer Science and Engineering, University of Notre Dame

Notre Dame, Indiana, United States of America
Email: {nhazekam,dthain}@nd.edu
‡CyVerse, The University of Arizona

Tucson, Arizona, United States of America
Email: {upendra}@cyverse.org

†The University of Arizona
Tucson, Arizona, United States of America
Email: {nirav}@email.arizona.edu

Abstract—As cloud resources become more available as an
execution platform, the need to transition applications between
HPC and the cloud becomes a necessity. However, because of the
complex setup and system specific demands of these applications,
transition is difficult and may not scale as desired. Jetstream is a
NSF funded cloud service that is aiming to provide these services
for users in a dynamical allocated nature. In this work we look at
three key areas to focus on when transitioning between resources:
providing a portable reproducible environment, scaling between
local and remote resources, and using feedback to the user
for informing configuration and runtime decisions. Building on
the MAKER bioinformatic application, we have deployed WQ-
MAKER on the Jetstream cloud platform, helping to annotate
over 30 genomes and accelerating performance from days to
hours and weeks to days.

Index Terms—Bioinformatics, Workflows, Scalability

I. INTRODUCTION

Today’s researcher has access to a large number of comput-
ing resources, including multiple specialized high performance
machines (HPC), general purpose commodity clusters, and
public cloud services. Many users desire the flexibility to move
their applications between platforms so as to take advantage
of the best cost and performance available to them. This
specialization makes traditional HPC applications difficult to
move between environments.

Historically, HPC applications have been built in isolated
environments supported by professional system administration
staff. In order to extract the maximum possible performance
from specialized hardware, application creators have relied on
custom software stacks, tuned code to rely on high perfor-
mance network interconnects, and designed I/O behaviors to
exploit sophisticated high performance filesystems. As a result,
applications often become dependent upon the specific details
of the environment in which they were created. Getting an
application to run in a new environment is challenging and
once running, may not be optimized or configured similarly
for the hardware.

As a case study to investigate this problem, we consider
the MAKER [1] bioinformatics pipeline. MAKER has a large

number of software dependencies that must be installed, lim-
ited scalability in high latency environments, and can produce
configuration and runtime errors that are difficult to diagnose,
all of which are common traits of HPC applications.

In our experience of migrating MAKER, we determined
three goals for smooth transition between platforms.

• Portable reproducible environment for HPC, Cloud, and
user resources, targeting support with user permissions.

• Ability to leverage resources (threads/MPI) on local and
remote resources (multiple non-contiguous machines).

• Provide feedback for scalable and dynamic system, to aid
in configuration and runtime decisions.

In order to achieve these goals we used VC3 [2] to build
MAKER on site, instead relying on an existing machine
or container images with variable availability, to provide a
portable reproducible environment. WQ-MAKER, a combi-
nation of Work Queue and MPI, was used to leverage local
concurrency across a set of distributed resources at different
sites, i.e. Jetstream, Condor, and locally. In using VC3 and
writing WQ-MAKER, care was taken to determine the origin
of errors, direct users on fixing them, and providing runtime
stats on performance.

Using these techniques we were able to launch MAKER
on multiple platforms, including on the NSF Jetstream cloud
facility where WQ-MAKER is currently in production use
for bioinformatics research. As more users build the provided
software and pipeline, we have been able to leverage avail-
able resources in Jetstream to accelerate performance of the
analysis of over 30 genomes.

II. BACKGROUND

A. MAKER

MAKER is a bioinformatic pipeline used to annotate ge-
nomic information. MAKER utilizes standard programs in
bioinformatics to customize the processing and preparation
of the raw data. This includes processes to identify repeats,
align ESTs and proteins to a target genomes, predict genes,

and quantify the quality of the results based on the provided
evidence. MAKER focuses on automating the entire annota-
tion process to create an easy and consistent initial annotation.
MAKER is still under active development and is used in many
areas of organism modeling. It can be deployed as a sequential,
multicore, or MPI application, depending on the available
resources. As a side-effect of utilizing a number of different
tools in the pipeline, files are often used as intermediaries on
top of the data structures passed by MPI, leading to reliance
on shared filesystems on multi-machine MPI runs.

B. Jetstream

Jetstream [3], [4] is a NSF funded cloud service built
on OpenStack. Operates similarly to Amazon EC2 and has
support for data transfer and storage. Allows users created
images to provide consistent platforms for review, comparison,
and verification of results. One of Jetstream’s goals is to
provide a service that focuses on usability and support. As
a cloud service, Jetstream is able to create and host custom
images and environments that are more difficult to deliver on
a more traditional HPC service.

C. Work Queue

Work Queue [5] is a master-worker framework that provides
an API for creating tasks and submitting them to a hetero-
geneous pool of workers. Workers are started as stand-alone
processes either submitted to a batch system or run locally,
creating a diverse pool of resources. Work Queue makes the
assumption that there is no shared filesystem and requires files
to be specified for transfer. With the provided inputs, tasks
are distributed to workers based on matching the required
resources. Theses tasks are placed in a local sandbox and
executed with a specified command. Upon completion the
output files are collected and returned to the master. Using
workers as a pool of resources allows for dynamic addition
and removal of workers to scale to execution needs.

Assuming no shared filesystem, each worker creates a local
cache to limit repeatedly transferring files that are shared by
multiple tasks. This is useful in applications with common
reference files, such as many bioinformatics workflows. Ad-
ditionally, the assumption of no shared filesystem for a cloud
environment where files must be transferred between instances
for collaboration.

III. PORTABLE REPRODUCIBLE ENVIRONMENTS

Creating and supporting a reproducible environment is a
current research topic of relevance with working being done
at the platform level of OpenStack and Amazon, the container
level by Docker and Singularity, and the deployment level of
Jenkins, and Ansible. These three different levels each provide
a different way of creating a reproducible environment. As part
of this work, we targeted Jetstream, but also our Condor and
SGE clusters, as well as user machines. A key consideration
was the user’s ability to verify a setup and configuration locally
prior to moving to larger, possibly costly, resources.

A. Machine Images

A machine image is a pre-built snapshot of a desired
software stack. Machine images can come in a variety of
formats and are supported by a variable number of platforms,
such as OpenStack. Machine images are ideal when working
on a singleoperating system (OS) and platform as a base
to provide consistent low level integration. However, outside
of the scope of a single operation system, images have less
portability. This reduced portability requires a developer to
maintain machine images for each supported platform. This
also precludes using the image at HPC facilities that lack user-
level integration with machine images. The machine image
would be an ideal target were we not also targeting users
without access to systems like Jetstream.

B. Container Images

A container image is, similar to a machine image, a snapshot
of a desired software stack. Container technology allows for
users to run a container image on a supporting site using
programs such as Docker, Singularity [6], and Charliecloud
[7]. Container images provide an portability at a higher level
than machine images, by running on any system that supports
them. This allows for container images of variable OS to run
on any supporting resource. Containers are also now beginning
to be supported at HPC centers, such Singularity on a number
of XSEDE resources.

However, in the case of both Docker and Singularity,
super-user privileges are required for installing the software.
Therefore leaving systems such as campus resources and local
clusters unavailable. Charliecloud, assuming unprivileged user
name spaces are enabled in the kernel, does provides a user-
level container system. Unfortunately, not all kernels have this
enabled by default, and availability varies between resources.

C. Deployment Services

In contrast with images, a deployment services install and
organizes independent software packages into a single coher-
ent package. This often includes finding either source code or
pre-compiled binaries that are compatible, installing them, and
configuring different software packages together. Examples of
deployment services are as simple as apt-get and make, up to
automated systems such as Ansible, Spack, Homebrew, and
server-level orchestration tools such as Jenkins and Puppet.

In contrast with machine images, deployment services are
often lightweight and only require a small number of prede-
termined packages to be installed. This allows for a high level
of flexibility when deploying in a diverse set of environments
and onto different platforms. While some cloud platforms
may offer interoperability due to an underlying OpenStack
framework, most platforms will require machine images to
be recreated. Using a deployment services alleviates this by
adapting to the current system and using generic build in-
formation from source where necessary. Deployment services
adapt well to changes in versions and allow a user to customize
these on the fly and test out different configurations.

Deployment services help to codify required build steps, and
when written with multiple OSes in mind can reduce the work
of supporting different platforms. However, with this flexibility
comes the cost of building the software at each site for each
use. Additionally, builds often rely on a remote data such as
git repositories or the software’s host site, as in the case of
MAKER. The large variance in power and scope of these tools
results in a number of different situations where super-user
privileges may or not be needed.

D. VC3

As mentioned previously, several platforms were targeted
including Jetstream, a Condor pool, a SGE cluster, and individ-
ual machines. As a result, we targeted a deployment services
to allow for flexibility on both the OS and permissions. Some
sites, such as local clusters, neither had the required tools
installed nor allowed user-level installation. Targeting user-
level permissions and OS agnostic features provides flexibility
to target users’ available resources.

VC3 [2] was used to install and configure MAKER. VC3
creates a sub-shell with a self-contained environment, and
organizes software in a consistent, predictable manner. VC3
is based upon the idea of tool recipes, with inspiration taken
from NixOS [8]. Each tool description consists of a recipe,
dependencies, version, and environment variables.

VC3 has several features ideal for MAKER. The consistent
file structure and referencing is important as some MAKER
dependencies rely on hard-coded paths and strict relative lo-
cations. This allowed for resources to come from a number of
configurations with the same structure. VC3 also requires only
user level permissions, allowing the portability to any linux
platform. VC3’s interface allowed invocation of MAKER and
organization of input data to be consistent between systems.
Though there are other tools that could perform similarly,
VC3 was picked for it flexibility, unprivileged operation,
and familiarity. Similar solutions were written using Ansible,
though this method was only used on Jetstream.

E. Deploying MAKER

When deployed onto Jetstream, MAKER was installed using
deployment services to consistently handle the complex setup.
VC3 and Ansible were both used for consistent builds on more
widely provided base images, such as Centos 7 Developement.
This process included installing several of MAKER’s required
programs and libraries that cannot be distributed in an auto-
mated manner due to developer licensing.

Though deployment services provide more flexibility when
installing, a machine image provides easier, faster start-up for
the users. To accommodate this, a machine image was built
with the VC3 package installed, allowing execution to only
verify the MAKER install and not have to build it each time.
Additionally, Work Queue workers could be launched from
the same machine image limiting traffic to only task input and
output, rely on required software to be installed. This differed
on our Condor cluster where there was no shared file system

or container support. As a result a compressed install of VC3
was sent, so MAKER was built for each OS only once.

A build using deployment services provides a great deal of
flexibility, but as users primarily used this just for MAKER, the
repeated build overhead limited benefits. This was mitigated by
using a machine image with MAKER installed using VC3 on
Jetstream, and compressed VC3 on Condor. Using VC3 made
rebuilding images, targeting new OS, and adding new features
simple. By using a static image based on the deployment
services, regardless of machine or container image, we can
update software without the user needing to build every run.

IV. SCALABILITY

We define scalability as the number of cores that any one
project was able to harness at a time. In an HPC context,
this translates to the number of cores by the number of
machines that were allocated to your job. MPI, being able
to work on distributed memory machines, could work across
the boundaries of several machines. In a cloud context, jobs
are often limited by the size of selectable images. Some cloud
platforms allow for creating sub-networks of machines, but the
typical user (a researcher trying to run an analysis) will not
have the time nor expertise to configuring them.

Scalability was achieved at two levels in this work.
1) Local parallelism, such as MPI, GPUS, or threads.
2) Distributed concurrency, partitioning across machines.
Our scalability goal was to limit both involvement in

the provided software and work needed to target a differ-
ent concurrency model. As such we decided on using the
provided concurrency model of MAKER, MPI, to execute
on each worker, where a worker is equivalent to a node.
Using MPI allows us to scalably utilize resources, but lacks
dynamicity as new resources become available. By leveraging
the existing concurrency model we avoid the complexity of
interfacing with MAKER’s internal architecture. This also
allows for smooth transitions between versions of MAKER
and any underlying programs. This, based on experience from
our previous tightly interfaced work [9], makes transitioning
between versions, configurations, and platforms difficult, re-
quiring repeated almost equal effort for each transition.

Relying on the underlying concurrency model for local
parallelism lets Work Queue reason about the scaling and
distribution of work to all available resources. In contrast with
concurrency models like MPI and threads, Work Queue does
not rely on having a statically determined set of resources.
Orchestrating the work distribution with Work Queue allows
users to add workers to increase resource pool, use resources
from several allocations or sites, and provides fault tolerance
to the application as a whole. Relying on MPI for local
scalability, WQ-MAKER uses Work Queue to dynamically
schedule on new resources.

A. MAKER’s MPI Behavior

MAKER utilizes MPI as the primary means for scalabil-
ity. Concurrency in bioinformatics is often available at the
sequence (contig/scaffold) level. This is a division commonly

MAKER

Align
C1

Mask
C1

Ann.
C1

Align
C2

MAKER

Align
C1

Mask
C1

Ann.
C1

Align
C3

Mask
C3

Ann.
C3

Align
C2

Mask
C2

Ann.
C2

MPI
P1

MPI
P2

MPI
P3

MAKER Sequential
Execution

MAKER MPI
Execution w/

Load Balancing

File
Synch

Dist
MAKER

Worker
1

Worker
2

Worker
3

Alg
C1

M
C1

An
C1

Alg
C3

M
C3

An
C3

Alg
C2

M
C2

An
C2

MPI
P1

MPI
P2

MPI
P3

Alg
C7

M
C7

An
C7

Alg
C9

M
C9

An
C9

Alg
C8

M
C8

An
C8

MPI
P1

MPI
P2

MPI
P3

Dist MAKER
Execution

Partitio
n 1-3 Partition 7-9

Fig. 1: MAKER, MPI MAKER, and WQ-MAKER models
MAKER, without MPI, runs the sub-process analysis sequen-
tially. MPI MAKER executes by sharing work, with MPI
processes going to the pool of ready tasks and executing them.
These processes are synchronized using data-structures(in
MAKER) and data files(in MAKER’s sub-tools) passed be-
tween sub-process (see dotted lines). WQ-MAKER partitions
the data and sends it to separate workers. Each worker
executes MAKER locally using MPI MAKER.

used for partitioning data, as each sequence is a unique piece
of data analyzed separately from the other sequences. MAKER
then creates an additional level of concurrency using each
analysis tool as a sub-process in the pipeline. This allows
the burden of longer running sequences to be shared between
multiple cores on the same machine and allows load balancing
with smaller computational chunks. However, the secondary
level of concurrency can rely on intermediate files, for locks
and tool specific data, to exist in shared space between
tasks. This is not a requirement of MPI, which discourages
this, though some MAKER’s sub-processes rely on files for
information and state. As a result, execution must also be
located in a shared filesystem to allow for the outputs to be
coordinated between all MPI processes.

B. WQ-MAKER

WQ-MAKER is built using the Work Queue API. The work
is partitioned in different sizes, anywhere from individual
sequences to the entire query file. WQ-MAKER does not
split the work past the sequence level, as MAKER does with
MPI, to prevent communication overhead from sub-processes.
Each partition is a self-contained computational chunk that is
distributed and organized after completion.

WQ-MAKER utilizes Work Queue’s resource interface to
allocate resources based on the partitions size and structure.
Controlling at the task level allows for handling based on
structure, such that long scaffolds are handled differently than
short contigs. Using the resources allocated to a task by
Work Queue, the worker can assign the appropriate amount
of cores for MPI. To do this accurately assign resources a
model is being developed as part of future work. Employing
MPI on larger task, which occupy the entire worker, limits the
master’s management burden of monitoring workers.

C. Scaling up vs scaling out

Scaling up helps to accelerate the annotation of genomes,
but scaling up is not always the best usage of resources. A
common assumption is that it is best to scale up using all of the
available resources immediately. However, in practice this is
seldom the truth as distribution of shared data (i.e. references),
connecting to multiple resources, and spamming batch systems
results in a gradual increase in resources, not an immediate
deluge. This more gradual availability of ready resources can
cause timeouts and under utilization of provided resources.
This limitation leads users to under-provision applications
instead of gradually adding resources as applications stabilizes.
This was not addressed in this work other than to provide
runtime feedback to the users about usage, so they are better
informed. Work Queue masters track capacity of an application
and inform users to add resources as the master can support
more.

Compared with scaling up, scaling out can better utilize
those resources for concurrent analysis of genomes, allowing
for the same pool of resources to be shared, workers are
kept busy with tasks from different masters. Work Queue
allows for workers to match to multiple masters, enabling WQ-
MAKER to share workers between instances. This provides
an additional level of load balancing, without relying on
additional underlying systems.

V. EXPOSING EXECUTION FEEDBACK

A. Clean Environment Builds

The first major obstacle was providing the users with clear
feedback on the creation of the MAKER environment. Using
deployment services to create, update, or modify the instance
can initially cause errors and warnings, but once codified
offer consistent builds. These build errors were typically only
encountered by developers and could be diagnosed quickly.
To communicate this, VC3 and Ansible need to have clear
error handling and messages to identify errors. Build errors
are mitigated when using static images, but can still be
relevant as users want different configurations. Additionally,
applications such as MAKER, where a variable number of
the subsystems may be used, cursory testing does not always
reveal configuration errors. As such new errors can occur
when using different sets functionality, and must be clearly
differentiated from runtime errors.

When using static images, like machine or container images,
build errors are often self-explanatory, such as network errors,
insufficient resources, or just bad luck. Jetstream’s provided
trouble-shooting gives possible solutions for users to attempt.

B. Deploying Workers

When deploying workers, users must log into each worker
machine and manually start the worker process. This requires
users to manage multiple ssh sessions and any changes to
connection information (i.e. IP address or project name) must
be reflected to all workers. We use an Ansible-playbook that
allows the user to launch and manage workers from the host
machine. For the user, this is as easy as creating an ssh-key

 1000

 10000

 100000

 0 20 40 60 80 100 120

E
xe

cu
te

 T
im

e
(s

)

Total Cores

MPI MAKER
WQ-MAKER

Fig. 2: Comparison on Fungal(41MB) dataset
The Fungal dataset contains 231 contigs. With similarly runtimes,
we can see there was little or no overhead when using WQ-MAKER,
though little gained beyond 34 cores.

and saving it in Jetstream, allowing the master machine to
propagate commands using Ansible. On other systems, such
as Condor and SGE, Work Queue maintains a worker factory
that can submit workers resources become available.

Part of deploying workers is monitoring how many are
actively being used by the Work Queue master. This is done
using a status program that queries masters for active workers.
As previously mentioned, masters also track capacity and
can allow the factory to submit workers as masters are able
to support more, as a result of workers being initialized or
varying task execution time.

C. Evaluate Performance

Following a successful run, WQ-MAKER verifies success-
ful runs to ensure proper execution. This is done by rectifying
the final output files against the input data to ensure that all
contigs were analyzed. The produced statistics are examined
by WQ-MAKER to understand the behavior on this run’s
data. Work Queue provides a suite of graphing scripts for
more in depth analysis. These graphs help understand the
task execution, worker utilization, and file transfer speeds. All
Work Queue graphs used in this paper were created using these
tools.

D. Diagnosing Errors

Unfortunately, WQ-MAKER does not always run perfectly
and it is important to help users diagnose errors and where
they originated. After a run completes, WQ-MAKER prints
the successes and failure of contigs. WQ-MAKER will retry
failed contigs to ensure that it was not intermittent, possibly the
result of network issues, software bugs, or resource contention.
On repeated failure tasks are logged, reported to the user, and
abandoned to avoid wasted effort retrying them further. The
output of failed tasks is stored by WQ-MAKER, allowing for
users diagnose the issue later.

Work Queue provides a debugging log that can be turned
on to diagnose network errors, firewall issues, or file transfer

 1000

 10000

 100000

 0 20 40 60 80 100 120

E
xe

cu
te

 T
im

e
(s

)

Total Cores

MPI MAKER
WQ-MAKER

Fig. 3: Comparison on partial Hummingbird(900MB) dataset
This subset of Hummingbird contains 5000 contigs. In this image we
can see improvement of WQ-MAKER over the MPI run, likely as a
result of reduced contention for resources.

failures. If an error happens while running WQ-MAKER,
the Work Queue framework will print the error along with
additional information in the debug log.

VI. EVALUATION

Though performance is important, this paper did not di-
rectly measure the differences in start time between machines
images, container images, and deployment services. Using
deployment services we provide consistent builds, but lever-
aged machines images were available in Jetstream. The time
needed to build the software is relevant when redeploying
using deployment services. VC3 allows for multi-threaded
deployment, which reduces a 1 hour build to roughly 10
minutes using between 16 and 24 cores. VC3 reuses existing
builds allowing us to re-enter an existing build consistently in
under a minute. The consistent file structure of VC3 allows us
to build once and distributed to workers to install if needed.

WQ-MAKER was evaluated using several datasets. The
MPI executions were done using differently sized Jetstream
instances, up to the largest of 44 cores. The WQ-MAKER
executions were done using a master and a variable number
of workers on medium instances, 6 cores. The fungal data
set consists of 231 contigs. This data set is executed in
roughly 4 hours using 2 cores locally. With increased cores,
WQ-MAKER performance scales with MPI. Considering that
fungal dataset is small, there is limited improvement after 40
cores, with a slight increase at 104 cores, as seen in Figure 2.

The hummingbird genome consisting of 5000 contigs, a
medium sized genome sample. The results of running this
genome through MPI and WQ-MAKER can be seen in Fig-
ure 3. For this larger sample we were able see improved
performance over the standard MPI deployment as a result of
lessening the memory burden on each partition using several
workers. We were also able to see consistent reduction of
execution time as we increase resources.

The saguaro cactus dataset consists of 573771 contigs This
dataset took 57 hours to run using MPI MAKER on 24 cores.

 0

 100

 200

 300

 400

 500

 600

 0 50 100 150 200 250
 0

 200

 400

 600

 800

 1000

 1200

 1400

T
a
s
k
s

C
o
re
s

Master lifetime (min.)

Tasks instantaneous counts

Waiting
Running
Complete

Cores

Fig. 4: Saguaro Cactus(1.6GB) with MAKER on Condor
The two lines of note are the running tasks and cores. The running
tasks indicate the number of actively running MAKER tasks. The
cores indicate the cores utilized by WQ-MAKER. Condor’s volatility
as a job scavenging system causes the variability in available
resources.

Execution Cores Total Speedup
Time CPU Hours

MAKER* 52 days 1 — —
MPI MAKER 57 hrs 24 1368 —
WQ-MAKER 3.6 hrs 80-1344 1725.5 15.8

Fig. 5: Overall Performance Improvement
*MAKER’s execution is estimated using the CPU time of MPI
MAKER. The results from MPI MAKER and WQ-MAKER are actual
runs. WQ-MAKER performed ∼16x faster than MPI MAKER using
26% more CPU hours.

The raw CPU time spent during this job was 52 days of
computation. Using WQ-MAKER, we ran this same dataset
on our Condor cluster. Using Work Queue factory a mix of
workers were launched. Each task was partitioned into 100
sequence, 8 core jobs to allow them to fit in the Condor
instances. Figure 4 shows the number of tasks running over
time as the workflow executed. The final execution time was
3 hours and 36 minutes, running 168 tasks concurrently at
its peak, which equates to 1344 cores. As workers were
dynamically added and removed the total CPU hours was only
1725.5, a result of WQ-MAKER’s dynamic nature.

In total this project has been used by a number of users for
annotation. We are actively developing and improving WQ-
MAKER and working with users to better understand their
needs. Table I shows a subset of the genomes that have been
annotated using WQ-MAKER.

VII. RELATED WORK

A common consideration when looking for a way to build
a reproducible environment is to use container technologies
such as Docker [10] and Singularity [11]. Both Docker and
Singularity provide a means of creating reproducible exe-
cution environments. These containers can differ from the
execution platform even at the OS level. Unfortunately, super-
user privilege are required for the underlying daemon for

Genome Sequences Workers Runtime
(hrs)

Sporobolus A 11,789 contigs 22-40 144
Sporobolus B 6,615 contigs 21-35 108
Brassica rapa 44,000 scaffolds 10 4
Zea mays W22 10 chromosomes 10 1440
Zea mays nc350 6460 scaffolds 22 72
Culex tarsalis 7478 scaffolds 40 120
MP29 5003 scaffolds 40 24
Pigweed 4126 scaffolds 20 120
Sclerotiana 231 contigs 10 6
homeocarpa iso 10
Sclerotiana 257 contigs 10 6
homeocarpa iso 11
Calypte anna 265 super-scaffolds 10 8
Kochia scoparia 19,671 scaffolds 21 72

TABLE I: Genomes sequenced on Jetstream: This is non-
exhaustive list of genomes annoted using WQ-MAKER on
Jestream.

Docker and image creation in Singularity. Similarly there are
several automation systems [12], [13] that rely on system
configuration to provide consistent environments. VC3 [2],
does not replicate the original OS but builds the tools on the
current system, allowing VC3 to operate at the user-level. The
goal of VC3 is not to provide the exact execution environment
as with containers, modules, etc. but to provide research tools
without privileged operations.

This work builds on the work originally developed in [9].
There are several major difference between these works. The
original work replaced MAKER start program, and actively
used the internal data structure of MAKER. Versions changes
caused frequent errors, and site migration became impossible.
Other genomic work using Work Queue also includes SAND
[14] which looks at genome assembly. Though Work Queue
was utilized for this paper, there are several other scalable
solutions, such as Pegasus [15], Swift [16], and Spark [17].

VIII. CONCLUSION

Deploying MAKER on the Jetstream has helped us to better
understand reliable deployment, scalability, and what is useful
feedback. We generated a consistent build using machine
images built from VC3. We provided dynamic scalability by
using Work Queue to distribute partitions, and running existing
MPI parallelism at the worker. WQ-MAKER users leveraged
runtime data to understand performance, improve scaling, and
diagnose errors. WQ-MAKER has been used for over 30
genomes and can accelerate annotation time using a variety
of resources.

IX. ACKNOWLEDGMENTS AND AVAILABILITY

WQ-MAKER, Work Queue, and several other project
are available from the Cooperative Computing Lab
and deployed as CCTools, at http://ccl.cse.nd.edu/.
https://github.com/cooperative-computing-lab/cctools

REFERENCES

[1] M. S. Campbell, C. Holt, B. Moore, and M. Yandell, “Genome An-
notation and Curation Using MAKER and MAKER-P,” Curr Protoc
Bioinformatics, vol. 48, pp. 1–39, Dec 2014.

[2] B. Tovar, N. Hazekamp, N. Kremer-Herman, and D. Thain, “Automatic
dependency management for scientific applications on clusters,” in
International Conference on Cloud Engineering (IC2E), 2018.

[3] C. A. Stewart, T. M. Cockerill, I. Foster, D. Hancock,
N. Merchant, E. Skidmore, D. Stanzione, J. Taylor, S. Tuecke,
G. Turner, M. Vaughn, and N. I. Gaffney, “Jetstream: A self-
provisioned, scalable science and engineering cloud environment,” in
Proceedings of the 2015 XSEDE Conference: Scientific Advancements
Enabled by Enhanced Cyberinfrastructure, ser. XSEDE ’15. New
York, NY, USA: ACM, 2015, pp. 29:1–29:8. [Online]. Available:
http://doi.acm.org/10.1145/2792745.2792774

[4] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,
V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R.
Scott, and N. Wilkins-Diehr, “Xsede: Accelerating scientific discovery,”
Computing in Science Engineering, vol. 16, no. 5, pp. 62–74, Sept 2014.

[5] P. Bui, D. Rajan, B. Abdul-Wahid, J. Izaguirre, and D. Thain, “Work
Queue + Python: A Framework For Scalable Scientific Ensemble Ap-
plications,” in Workshop on Python for High Performance and Scien-
tific Computing (PyHPC) at the ACM/IEEE International Conference
for High Performance Computing, Networking, Storage, and Analysis
(Supercomputing) , 2011.

[6] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity:
Scientific containers for mobility of compute,” PLOS ONE,
vol. 12, no. 5, pp. 1–20, 05 2017. [Online]. Available:
https://doi.org/10.1371/journal.pone.0177459

[7] R. Priedhorsky and T. Randles, “Charliecloud: Unprivileged
containers for user-defined software stacks in hpc,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New
York, NY, USA: ACM, 2017, pp. 36:1–36:10. [Online]. Available:
http://doi.acm.org/10.1145/3126908.3126925

[8] E. Dolstra, A. LÖh, and N. Pierron, “Nixos: A purely
functional linux distribution,” J. Funct. Program., vol. 20,
no. 5-6, pp. 577–615, Nov. 2010. [Online]. Available:
http://dx.doi.org/10.1017/S0956796810000195

[9] A. Thrasher, Z. Musgrave, B. Kachmark, D. Thain, and S. Emrich,
“Scaling Up Genome Annotation with MAKER and Work Queue,”
International Journal of Bioinformatics Research and Applications,
vol. 10, no. 4-5, pp. 447–460, 2014.

[10] D. Merkel, “Docker: Lightweight linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2600239.2600241

[11] G. M. Kurtzer, “Singularity 2.1.2 - Linux application and
environment containers for science,” Aug. 2016. [Online]. Available:
https://doi.org/10.5281/zenodo.60736

[12] I. Redhat. (2012) Ansible. [Online]. Available: https://www.ansible.com/
[13] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R.

de Supinski, and S. Futral, “The spack package manager: Bringing order
to hpc software chaos,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
ser. SC ’15. New York, NY, USA: ACM, 2015, pp. 40:1–40:12.
[Online]. Available: http://doi.acm.org/10.1145/2807591.2807623

[14] C. Moretti, A. Thrasher, L. Yu, M. Olson, S. Emrich, and D. Thain, “A
Framework for Scalable Genome Assembly on Clusters, Clouds, and
Grids,” IEEE Transactions on Parallel and Distributed Systems, vol. 23,
no. 12, 2012.

[15] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman,
“Pegasus: Planning for execution in grids,” GriPhyN, Tech.
Rep. Technical Report 2002-20, 2002. [Online]. Available:
http://pegasus.isi.edu/publications/ewa/pegasus overview.pdf

[16] M. Wilde, M. Hategan, J. M. Wozniak, B. Clifford, D. S. Katz, and
I. Foster, “Swift: A language for distributed parallel scripting,” Parallel
Computing, vol. 37, no. 9, pp. 633–652, 2011.

[17] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica, “Spark: Cluster computing with working sets,”
in Proceedings of the 2Nd USENIX Conference on Hot Topics in
Cloud Computing, ser. HotCloud’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 10–10. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1863103.1863113

