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Summary

� Improved predictions of fitness and yield may be obtained by characterizing the genetic

controls and environmental dependencies of organismal ontogeny. Elucidating the shape

of growth curves may reveal novel genetic controls that single-time-point (STP) analyses

do not because, in theory, infinite numbers of growth curves can result in the same final

measurement.
� We measured leaf lengths and widths in Brassica rapa recombinant inbred lines (RILs)

throughout ontogeny. We modeled leaf growth and allometry as function valued traits (FVT),

and examined genetic correlations between these traits and aspects of phenology, physiology,

circadian rhythms and fitness. We used RNA-seq to construct a SNP linkage map and mapped

trait quantitative trait loci (QTL).
� We found genetic trade-offs between leaf size and growth rate FVT and uncovered differ-

ences in genotypic and QTL correlations involving FVT vs STPs. We identified leaf shape

(allometry) as a genetic module independent of length and width and identified selection on

FVT parameters of development.
� Leaf shape is associated with venation features that affect desiccation resistance. The

genetic independence of leaf shape from other leaf traits may therefore enable crop optimiza-

tion in leaf shape without negative effects on traits such as size, growth rate, duration or gas

exchange.

Introduction

Plant fitness in natural populations and yield in agricultural fields
are influenced by ontogenetic contingencies – that is, by the his-
tory and shape of developmental growth curves (Diggle, 1997;
Weinig & Delph, 2001). Developmental variation can have dra-
matic effects on fitness and yield, and consequently should be an
important target for natural and artificial selection (Dobzhansky,
1956; Ritchie et al., 1998). Characterizing the genetic controls
and environmental dependencies of organismal ontogeny may
lead to better predictions of fitness and yield than final estimates
alone (Hammer & Jordan, 2007). Further, elucidating the shape
of developmental growth curves may reveal genetic controls that
single-time-point analyses cannot because, in theory, there are an
infinite number of growth curves that can result in the same final
measurement. However, relatively few studies incorporate the
entirety of organismal ontogeny. In part this is because studying
developmental variation adds not only significant time and cost
to experiments, but also complexity to data analysis.

Mathematical modeling is one means to manage complex
developmental data. Rather than considering development as a
series of discrete, single-time-point measurements, organismal

development can be viewed as a continuous and continuously
changing trait. Such traits are commonly referred to as function-
valued traits (FVT), because mathematical modeling is used to
describe the values of these traits as a function of time (Jaffr�ezic
& Pletcher, 2000; Kingsolver et al., 2001; Wu & Lin, 2006).
FVT modeling has several advantages over traditional approaches
to developmental analyses. FVT modeling effectively increases
statistical power by eliminating the need for factors that account
for repeated measurements (Griswold et al., 2008; Stinchcombe
& Kirkpatrick, 2012). When model parameters are treated as
traits for quantitative trait locus (QTL) mapping purposes, no
novel statistical methods are necessary for analyzing the data
(Xiong et al., 2011). FVT parameters can be used to estimate the
effects of selection while repeated measures of a trait over time
are typically highly correlated and violate the assumptions of
multivariate regression used in selection analyses (Lande &
Arnold, 1983). FVT modeling is also an effective data reduction
step: complex logistic growth curves can be described with just a
few parameters. However, unlike data reduction, FVT modeling
does not imply that data or precision are lost. In fact, FVT inte-
grate across development enabling extraction of novel, composite
variables such as growth rates and durations, which may
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influence fitness and be under different genetic controls than
final size.

Traits that show continued development or growth over time
benefit from FVT modeling. Examples of evolutionary and
agroecologically relevant traits include fruit and flower produc-
tion, which are important components of reproductive output,
and vegetative traits that can contribute to carbon fixation and
resources available for eventual reproduction (Stinchcombe et al.,
2010). Herbivory and disease resistance over time have also been
modeled as FVT (Pilson, 2000; Roux et al., 2010). Using an
FVT approach to describing leaf development throughout ontog-
eny may improve estimates of quantitative genetic features such
as heritabilities and can be used to test for significant covariances
with other traits. In relation to leaf traits, FVT enable modeling
not only of leaf length and width, but also change in leaf shape by
examining the relationship between length and width over time.
It remains an open question whether such allometric features are
directly (mathematically or genetically) related to growth curves
of individual component traits. Further, leaf allometry is com-
monly correlated with venation patterns that affect gas-exchange
traits important to crops such as desiccation resistance (Nicotra
et al., 2011), whereas leaf growth rates may affect yield in leaf
crops; hence understanding the genetic similarity vs indepen-
dence of different leaf traits is relevant to crop improvement.

As is the case for traits measured at a single-time-point, signifi-
cant associations between FVT model parameters and other traits
may provide insights into mechanisms of growth and reproduc-
tive output. We hypothesize that leaf growth rates (or allometric
changes) correlate with resource availability or other aspects of
development, because leaf growth rates and shapes could be
affected by (or affect) net carbon assimilation. Although the tran-
sition to flowering is commonly mediated by environmental cues
such as day length (Guo et al., 1998) and temperature (Johanson
et al., 2000; Blazquez et al., 2003), plants may need to attain suf-
ficient resources before becoming competent to respond to these
signals (M�endez & Obeso, 1993). Thus, flowering time may be
related to rates of vegetative growth. Growth rate, duration or
allometry may also be affected by developmental regulators such
as the circadian clock, which gates the diurnal timing of cell and
organ elongation (Nozue et al., 2007). Because FVT incorporate
the dynamic genetic and environmental determinants of growth,
FVT parameters may have stronger (or simply different) genetic
correlations and underlying loci than single-time-point measures.

In order to investigate the genetic architecture of organ-level
developmental dynamics and compare these to organism-level
performance, we measured leaf development in a mapping popu-
lation of Brassica rapa recombinant inbred lines (RILs). B. rapa is
a widely cultivated crop species domesticated for seed oil content,
vegetable turnips and leaf crops (Zhao et al., 2005). Consequently
B. rapa has a rich history of artificial selection, breeding for crop
improvement and diversification (Annisa & Cowling, 2013; Guo
et al., 2014). Additionally, weedy populations of B. rapa are of
interest as a model for evolutionary ecology and, because of gene
flow between weedy populations and cultivated fields, are also
agriculturally relevant (Adler et al., 1993; Snow et al., 1999). To
test for agroecologically relevant environmental contingencies, we

grew the RILs in field settings that differed in density. Specifi-
cally, we generated FVT parameters for leaf length, width and
allometry, and examined the genetic architecture of these traits.
We address the following questions: (1) are FVT parameters for
leaf length, width or allometry genetically similar to or distinct
from single-time-point (STP) measurements, as estimated from
genetic correlations and QTL; (2) Do leaf FVT co-vary with leaf-
level photosynthetic capacity (Amax), stomatal conductance (gs),
and water-use efficiency (WUE), flowering time or circadian
parameters? (3) Are FVT parameters for leaf length and width
genetically correlated with allometry parameters? (4) Do associa-
tions between allometry parameters and physiological or pheno-
logical traits resemble those observed for leaf length or width
parameters, as would be expected if leaf length, width and allome-
try are controlled by the same genetic mechanisms? and (5) Are
model parameters for leaf development related to fitness?

Materials and Methods

Species description

Brassica rapa L. (Brasssicaceae) is an annual to biennial herba-
ceous crop that was domesticated in Eurasia. This study was con-
ducted on Recombinant Inbred Lines (RILs) derived from R500,
an oil seed variety of B. rapa that has been cultivated for > 3000 yr
in India (Hinata & Prakash, 1984), with IMB211, a line derived
from the Wisconsin Fast Plant (WFP) line. The WFP line was
produced by selection for early flowering and short generations
for 10 generations. IMB211 was derived from this line by inter-
crossing WFPs and selecting for self-compatibility and high
fecundity (Williams & Hill, 1986). In comparison with IMB211,
R500 flowers later, attains a larger size and greater biomass, and
allocates more resources to seed production. IMB211 and R500
were crossed to produce an F2 generation. Plants from the F2 gen-
eration were advanced by selfing and single-seed descent for eight
generations to produce RILs predicted to be > 99% homozygous
(Iniguez-Luy et al., 2009). Thereafter, the RILs were propagated
by bulking (Brock & Weinig, 2007). This experiment includes
119 RILs, the R500 parent and a representative of IMB211.

Experimental design and data collection

In 2012, the RILs were germinated in the University of Wyo-
ming Glasshouse (41°19011″N, 105°33034″W, 2218 m eleva-
tion) in 4″ peat pots filled with soil from the field and fertilized
with 15 ml Osmocote (Scotts Company LLC, Marysville, OH,
USA). Pots were topped with 1 cm LP5 potting soil (Sun Gro
Horticulture, Agawam, MA, USA). Seeds were planted 5–10 mm
deep and covered with vermiculite. To examine the effects of
shade on leaf development, two density treatments were
employed: uncrowded (UN) with one plant per pot and crowded
(CR) with five plants per pot. For the UN treatment, three seeds
were planted in the center of the pot. For the CR treatment, three
seeds were planted in each of five locations: the center of the pot
and near each corner using a grid that spaced planting locations
1.5 cm apart. All plants in a pot were the same genotype (RIL).
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After germination, seedlings were thinned to the appropriate den-
sity. In the CR treatment, the single central plant was designated
the focal individual. If the central plant did not germinate, an
alternative plant was designated the focal individual. CR treat-
ment pots with fewer than three germinants were dropped from
the study.

Once the cotyledons had fully expanded, all plants were trans-
planted into the field into multiple blocks with each pot 18 cm
apart. Blocks consisted of either UN or CR pots, and each block
contained one replicate of each RIL as well as R500 and a repre-
sentative of the IMB211 parent. Eight CR and eight UN blocks
(for a total of 2128 pots) were located randomly in the field, and
pot location within each block was randomized. Plants were irri-
gated to field capacity, and a rotating regime of systemic (Pasada
1.6F (Makhteshim Agan of North America, Inc, Raleigh, NC,
USA) and Marathon (Bayer CropScience Ag, Monheim am
Rhein, Germany)) and nonsystemic (Sevin (GardenTech Pala-
tine, IL, USA) or Monterey Garden Insect Spray (Lawn and Gar-
den Products Inc., Fresno, CA USA)) pesticides were applied as
needed. Temperature data were recorded every 5 s in the Glass-
house and field using a series of Onset® Hobo� data loggers and
a Campbell Scientific (Logan, UT, USA) CR23X data logger
equipped with a Vaisala (Helsinki, Finland) HMP-50 sensor.
Temperature data were used to produce hourly and daily aver-
ages, as well as hourly and daily minimums and maximums, for
degree day calculations, which used a B. rapa-specific base value
of 0.96°C (Vigil et al., 1997).

Leaf length (LL) and leaf width (LW) were measured on the
second epicotylar leaf two to three times per week from leaf emer-
gence until leaf senescence. Leaf lengths were measured from the
leaf base to tip, and widths were recorded at the widest part of
the lamina. Plants were scored daily for germination and three
times per week for bolting and flowering. We estimated fitness
from a subset of plants (for practical reasons related to labor) by
harvesting five CR and three UN blocks after plants had
senesced. For each harvested pot, the numbers of plants per pot,
‘good fruit’ (filled with mature seed) and seeds from two repre-
sentative fruits were counted. These data were used to generate
good fruit per plant (number of good fruit/number of plants per
pot; hereafter ‘fruit’) and seed per plant (average seed in a
fruit9 good fruit per plant; hereafter, ‘seed’).

Physiological data [photosynthetic capacity (Amax), stomatal
conductance (gs) and water-use efficiency (WUE; Amax/gs)] were
collected from plants grown in the same field in 2010 (as
described in Edwards & Weinig, 2011). In Edwards et al. (2012),
a severe drought treatment was applied to these RILs in 2010.
Yet, physiological traits among drought and control treatments
were relatively highly correlated, and the rank order among RILs
was largely maintained. Furthermore, correlations between physi-
ological traits measured in 2010 and the same traits measured in
a subset of the 2012 RILs ranged from 0.73 to 0.91 (P < 0.01 for
all correlations), suggesting that for this RIL set, genotypic values
for gas exchange collected in one field season are highly represen-
tative of those collected in another season. Circadian data were
collected from plants grown in a growth chamber as described in
Lou et al. (2012).

Data analysis

Modeling Leaf development was modeled by fitting leaf length
and width to a logistic growth curve optimized with a Least
Squares approach using the Levenberg–Marquardt algorithm and
the closed form solution for the following differential equations:

d

dt
LL ¼ rLL

LLLmax � LL

LLLmax

� �
Eqn 1

and

d

dt
LW ¼ rLW

LWLmax � LW

LWLmax

� �
Eqn 2

where r estimates growth rate and Lmax estimates maximum size.
Duration of growth (d) is the time the first observation occurred
after growth reached 95% of Lmax. Data from UN and CR treat-
ments were modeled independently. Model parameters are com-
pared to single-time-point (STP) measures, which represent the
last actual data point recorded.

The LL and LW traits were quality controlled. Obviously
erroneous data were removed or replaced with the average of the
surrounding data points for that plant. Individual plants that
had too few data points, that developed oddly compared to
plants from the same line (for instance CR plants that were sup-
pressed), or for which the LL or LW measures did not capture
the entire growth curve were excluded. After quality control, all
genotypes were represented by a minimum of three plants per
treatment.

Leaf allometry was modeled using a standard power-law equa-
tion (Eqn 3), which was used to describe allometric growth as
early as the 19th century and is still extensively used today (Snell,
1892). The allometric model generates a relationship between
leaf length and leaf width and implicitly includes developmental
time according to the formula:

LW ¼ a LLð Þb Eqn 3

where a is a scaling factor relating LL to LW, and b describes the
curvature of the relationship. When b > 1, leaf width increases
proportionately faster than length (positive allometry); the reverse
is true when b < 1 (negative allometry). When b = 1, the ratio of
width to length is constant, a condition called isometric allometry
(Gould, 1966).

Heritability For all phenology, fitness and leaf traits Best Linear
Unbiased Predictions (BLUPs) of genotypic means and errors
were generated and broad-sense heritabilities were calculated
independently for CR and UN treatments using PROC MIXED in
SAS 9.2 while controlling for line and block (Supporting Infor-
mation Tables S1 and S2). BLUPs for Amax and gs were
re-estimated from the original raw data (C. E. Edwards et al.,
unpublished) to control for line, block and IRGA ID. Circadian
rhythm BLUPs (Lou et al., 2012) were also re-estimated. In a
similar set of models, we combined CR and UN datasets to test
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for the main effects of treatment, line and block, as well as
random effects of block nested within treatment, treatment, line
and line-by-treatment interactions (SAS 9.2 PROC MIXED, Cary,
NC, USA).

Genetic correlations Bivariate genetic correlations were
estimated using genotypic means, and the procedure cor.test for
Pearson’s product moment correlations in R (R Core Team,
2014). A Bonferroni correction for multiple tests was applied.

QTL analyses QTL analyses were performed in R/QTL
(Broman et al., 2003) using a highly resolved RNA-seq based
SNP map with 1273 informative genomic bins (‘markers’) dis-
tributed across the 10 B. rapa chromosomes with an average dis-
tance of 0.79 cM. Genotypic bins were delineated by genotyping
124 RILs at > 65K SNP positions. SNPs were identified by a
samtools/bcftools-based analysis using > 355 million mapped 44-
bp RNA-seq reads with an average depth across the transcriptome
of 2.6 reads per RIL. Because only a fraction of genes are
expressed, the actual coverage for expressed genes is significantly
higher (M. F. Covington et al., in prep.). Single QTL were iden-
tified using the SCANONE interval mapping function at 1 cM reso-
lution with estimated genotyping errors of 0.001 and Haley-
Knott regression (Broman & Sen, 2009). Epistatic interactions
were identified via SCANTWO interval mapping at 2 cM resolution
using the EM algorithm for identifying maximum likelihoods
(Broman et al., 2003; Broman & Sen, 2009). All 95% signifi-
cance thresholds were obtained using 1000 permutations. Signifi-
cant QTL identified from SCANONE and SCANTWO functions were
used to seed an initial model to explore more complicated genetic
architecture. Model space for each trait was searched using an
iterative process (FITQTL, REFINEQTL and ADDQTL functions using
1000 imputations at 1 cM resolution with estimated genotyping
errors of 0.001). After each iteration, nonsignificant QTL were
dropped from the model and significant QTL were added. QTL
and their 1.5 LOD intervals are displayed using MAPCHART2.0
(Voorrips, 2002). QTL-by-environment interactions for QTL
with additive effects were assessed using a series linear regression
models (lm) and two-way ANOVAs to asses each significant

marker individually in R (Fox & Weisberg, 2011). A P-value
< 0.05 for the type III F-values of treatment-by-QTL interactions
was considered evidence of QTL by environment interactions.

Selection analyses Selection analyses followed Lande & Arnold
(1983). Genotypic means were standardized to a mean of zero
and a standard deviation of one, and estimates of relative fitness
were generated by dividing the genotypic mean of ‘seed’ for each
line by the grand mean. Linear and quadratic regression models
were constructed separately for the UN and CR treatments, and
selection on the length (LL_Lmax, LL_r, LL_d), width
(LW_Lmax, LW_r, LW_d), and width and allometry (LW_Lmax,
LW_r, LW_d and b) of leaves (R Core Team, 2014) was assessed
independently. For pairs of traits that were highly auto-corre-
lated, one trait was dropped from the model (therefore STP and
a are not included in any models). Indirect selection on leaf mor-
phology mediated by phenology was assessed by re-running each
model including a significantly correlated aspect of phenology
(bolt-to-flower for LL and LW; flowering time for allometry) and
comparing it to the previous model.

Results

Modeling

For all FVT models, there were sufficient data to support all
aspects of the growth curves modeled, and the models fit well to
the data (Fig. 1 for example model fits).

Genotypic means and heritabilities

There were significant genotype effects for all phenotypic traits in
both the CR and UN treatments (Table 1). The main effect of
treatment was never significant, although there was a nonsignifi-
cant trend for allometry such that b was slightly > 1 in UN
(b = 1.15) but < 1 in CR (b = 0.80). Line-by-treatment interac-
tions were significant for all leaf growth (r, d, Lmax) traits and fit-
ness estimates, but not for allometry parameters or phenology
(Table 1).

(a) (b) (c)

(d) (e) (f)

Fig. 1 Data and least-squares optimized
logistic growth models for uncrowded
Brassica rapa RILs (a–c, IMB211
representative; d–f, R500) for leaf length (a,
d), leaf width (b, e) and allometry (c, f).
Colors indicate individual replicate plants
within a recombinant inbred line (RIL).
Circles, actual recorded data; lines, logistic
growth curves fitted to the data. Note that
the color designating a replicate is consistent
across plots such that the same plant will
have the same color in all three plots.
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Broad-sense heritabilities were, with the exception of flowering
time, always higher for UN compared to CR plants (Table 1).
This difference is most striking for fitness characters, where herit-
abilities where between two and four times higher for UN plants
compared to CR plants (Table 1). Heritabilities for model
parameters estimating Lmax tended to be somewhat higher than
the STP measures of maximum size in both UN and CR condi-
tions (Table 1). For leaf width, heritabilities were similar for
LW_Lmax and LWSTP (Table 1). Among leaf traits, r had the
lowest heritability, with the exception of UNLL_r, which had a
heritability of 28.3% (Table 1). Heritabilities for d and for allom-
etry were intermediate (between 21.8% and 38.4%; Table 1)
between Lmax and r.

Genetic correlations

Genotypic correlations among and between leaf parameters and
nonleaf traits were similar across treatments (compare Figs S1
and S2). For the purpose of exploring detailed trait associations,

correlations between uncrowded leaf width traits, allometry FVT
and a subset of nonleaf traits are presented (Fig. 2).

Modeled estimates of LW_Lmax and LWSTP were, not sur-
prisingly, almost perfectly correlated with one another (Fig. 2),
suggesting that from a genetic perspective these are nearly identi-
cal traits and that the models are generally a good fit to the data.
LW_d was less strongly positively correlated with LWSTP in UN
(relative to LW_Lmax), whereas LW_r was negatively correlated
with LWSTP (Fig. 2); the magnitude of these correlations was
reduced in CR (Fig. S2).

Parameters of the function describing leaf allometry (a and b)
were highly negatively correlated (Fig. 2). Although allometry
describes the relationship between leaf length and leaf width, a
and b were never correlated with model parameters for either LL
or LW (Figs 2, S1, S2). This counterintuitive result occurred
because although LL_Lmax and LW_Lmax anchor the end point
of the line describing allometry, there are many different ways of
achieving that endpoint. Consequently, we identify allometry as
an independent property of leaves not captured by either length

Table 1 Block, environment (Treat), genotypic (Line) and genotype-by-environment effects and heritabilities in Brassica rapa recombinant inbred lines
(RILs)

Trait Model

Random effects (Z-values) Heritability (H2)

Block (Treat) Treat Line Line9 Treat Residual UN (%) CR (%)

LL_r t(1.62) = 557.88 2.28 0.07 4.02 3.36 26.42 28.30 15.38
*** * NS *** ** ***

LL_Lmax t(1.8) = 39.52 2.21 0.54 6.39 3.65 26.43 53.31 36.41
** * NS *** *** ***

LL_d t(1.83) = 47.75 2.22 0.38 5.76 2.59 25.21 38.18 25.01
** * NS *** ** ***

LLSTP t(2.47) = 49.38 2.32 0.35 6.52 2.99 26.47 44.11 33.18
*** * NS *** ** ***

LW_r t(1.5) = 463.34 1.73 0.42 4.12 2.07 26.72 17.15 11.37
*** * NS *** * ***

LW_Lmax t(1.64)=28.49 1.92 0.64 6.74 3.25 26.74 53.26 45.79
** * NS *** ** ***

LW_d t(1.67) = 43.68 1.59 0.54 5.44 2 25.88 27.30 21.83
** NS NS *** * ***

LWSTP t(1.75) = 30.29 2.03 0.63 6.88 2.69 26.78 54.36 46.32
** * NS *** ** ***

a t(1.42) = 17.16 2.25 0.43 5.86 . 26.75 25.09 21.90
* * NS *** NS ***

b t(2.76) = 55.93 2.19 0.16 6.39 . 26.75 27.89 26.35
*** * NS *** NS ***

Germination t(16.2) = 21.73 2.7 . 5.39 0.09 30.17 10.79 8.32
*** ** NS *** NS ***

Bolt t(7.53) = 45.97 2.31 0.35 7.64 1.02 29.02 66.77 62.10
*** * NS *** NS *** (67.64) (65.24)

Flower t(133) = 95.41 1.74 . 7.66 0.75 28.79 66.44 66.74
*** * NS *** NS *** (66.47) (70.02)

Bolt to flower t(1.21) = 34.1 2.32 0.47 5.34 0.34 28.52 16.67 10.80
** * NS *** NS *** (16.65) (11.48)

Fruit t(1.02) = 1.7 2.1 0.68 4.06 6.05 24.75 59.34 16.02
NS * NS *** *** ***

Seed t(1.02) = 1.66 2.1 0.67 3.68 5.87 24.36 55.63 20.10
NS * NS *** *** ***

All phenology components are listed in degree days with heritabilities for calendar days listed in parenthesis.
UN, uncrowded; CR, crowded; LL, leaf length; LW, leaf width; r, growth rate; d, growth duration (degree days); STP, single-time-point measurement at
maximum size (mm); a, a parameter of allometry; b, a parameter of allometry; bolt, time to bolting; flower, time to flowering; bolt to flower, the interval
between bolting and flowering; fruit, average good fruit per plant; seed, average seed per plant. *, P < 0.05; **, P < 0.01; ***, P < 0.001; NS, not significant.
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or width. It is also noteworthy that a and b are uncorrelated with
the STP, indicating that dynamic aspects of allometry over
ontogeny are uncorrelated with final leaf sizes.

Leaf and phenological traits are often correlated, but parame-
ters of linear leaf growth are associated with different aspects of
phenology than estimates of allometry. a and b are correlated
with days to bolting (Fig. S2) and days to flowering time but no
other nonleaf traits (Fig. 2), whereas LL and LW parameters are
not correlated with bolting or flowering time, but instead are cor-
related with the interval between bolting and flowering (Figs 2,
S1, S2). These differences in correlations support the hypothesis
that linear leaf parameters are genetically distinct from allometry
parameters. The phenological correlations are consistent with
negative correlations between LW_r and LW_Lmax. Specifically,
leaf growth rates (LW_r) were negatively correlated with the
interval between bolting and flowering, whereas LW_d and
LW_Lmax were positively correlated with the time between bolt-
ing and flowering (Fig. 2).

Photosynthetic capacity (Amax) was positively correlated with
LW_d, LW_Lmax, LWSTP and seed, but negatively correlated
with LW_r (Fig. 2). Although LW_r and stomatal conductance
(gs) were not correlated, LW_Lmax, LW_d and LWSTP were
positively correlated with gs (Fig. 2). The same pattern of associa-
tions was observed for LL (Fig. S1). Allometry parameters are not
correlated with gas exchange. Although not the primary focus of
our experiment, it is notable that gas-exchange traits were not

correlated with flowering time but were significantly correlated
with the interval from bolting to flowering (Fig. 2).

Circadian measures of period and phase at 18°C (PER18,
Phase18) were never significantly correlated with parameters of
the leaf developmental models, allometry, phenology, fitness or
physiology (Figs S1, S2). The lack of correlation between cir-
cadian rhythms and any field-measured traits may reflect the
fact that these datasets were collected in different environ-
ments. Circadian rhythms were not included in additional
analyses.

Additive QTL

QTL mapping revealed a total of 112 QTL with between 1 and 9
significant QTL for each combination of trait and environment
(Fig. 3; Table S3). However, because the 1.5 LOD support limits
indicate that many QTL colocalize, an alternative interpretation
is that we identified a minimum of 12 independent genomic
regions that could be responsible for the genotypic variation
observed. Each of the 112 individual additive QTL explained
1.41%-33.33% of variation in the RILs (Table S3). Fewer QTL
were identified for traits in the CR treatment vs the UN treat-
ment (44 vs 54), consistent with higher H2 for UN traits com-
pared to CR traits (Table 3). This trend was driven by allometry
(8 UN QTL vs 4 CR QTL) and phenology (15 UN vs 6 CR
QTL).

Fig. 2 Bonferroni-corrected genetic
correlations for uncrowded leaf width model
parameters, allometry, phenology, fitness
and physiology in Brassica rapa recombinant
inbred lines (RILs). The strong correlations
between models estimates of maximum leaf
width (LW_Lmax, in mm) and single-time-
point measures of final leaf size (STP, in mm)
indicate that the developmental models are a
good fit for the data. However, these
correlations are < 1 indicating that modeling
leaf development captures genetic aspects of
plant growth that STP alone does not.
Maximum leaf width is negatively correlated
with growth rate (LW_r, in degree days), a
dynamic that is the result of a genetic trade-
offs between growth rate and growth
duration (LW_d, in degree days). Note that
linear estimates of leaf growth are not
correlated with parameters describing leaf
developmental allometry (a and b).
Furthermore, these suites of traits have
different patterns of correlations with
phenology and physiology. bolt_to_flr, the
interval between bolting and flowering
(degree days); flower, time to flowering
(degree days); seed, number of good seed
produced; Amax, photosynthetic rate (lmol
CO2m

�2 s�1); gs, stomatal conductance (mol
H2O m�2 s�1); WUE, water-use efficiency
(Amax/gs). NS, not significant; *, P < 0.05; **,
P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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Additive QTL were distributed across all ten B. rapa chromo-
somes, although chromosomes 4 and 8 harbored relatively few
QTL (Fig. 3; Table S3). As expected based on the extremely
strong correlations, STP and Lmax often colocalize (e.g. QTL
located on chromosomes 1, 2, 3, 6 and 7). However, some QTL
appear to affect the parameters r and d and occasionally even
Lmax without associated effects on STP. For instance, a QTL on
chromosome 5 affects CRLW_r and CRLL_r but does not colo-
calize with QTL affecting STP (Fig. 3; Table S3). Similarly, a

QTL for UNLL_r and UNLW_d on chromosome 10 does not
have significant effects on STP. A QTL on chromosome 3 posi-
tively affects UNLW_r but negatively affects UNLW_Lmax,
UNLW_d and UNLWSTP, a pattern that is also repeated for the
leaf length FVT parameters in CR. Despite the strong genetic
correlations between STP and Lmax traits, QTL on chromo-
somes 4 and 10 affect CRLL_Lmax but do not colocalize with
QTL affecting STP (Fig. 3; Table S3). Notably, the higher H2 of
(UN) leaf FVT compared to STP results in a greater power to
detect FVT QTL. Therefore, locations harboring only STP QTL
likely do not have pleiotropic effects on FVT (i.e. type II error
does not cause failure to detect effects on FVT).

As expected based on the lack of genetic correlations, QTL for
a and b are often distinct from QTL for STP or r, d and Lmax
(e.g. QTL for UN_a and UN_b on chromosomes 1, 9 and 10, as
well as QTL for UN_a on chromosome 8, are independent of
other leaf FVT QTL in the same treatment). These independent
QTL indicate that the genetic architecture underlying allometry
differs from STP and linear leaf parameters. However, in a few
cases, a and b do colocalize with Lmax within the same treatment
(e.g. on chromosome 10) even though allometry and Lmax are
not genetically correlated.

Consistent with genetic correlations between leaf traits and phe-
nology, UNLL_Lmax and UNLL_r QTL colocalize with QTL for
the interval from bolting to flowering (on chromosome 3; Fig. 3;
Table S3). The majority of leaf length and width QTL are inde-
pendent of QTL for bolting or flowering time (44 QTL are inde-
pendent vs 7 that colocalize). By contrast, QTL for a and b
colocalize with QTL for degree days to bolting and flowering (e.g.
4 overlapping allometry QTL on chromosome 10), consistent with
the significant genetic correlations among these traits. These QTL
on chromosome 10 affecting allometry (b), bolting and flowering
time in both treatments explain a significant percentage of the vari-
ance and are among the largest effect QTL that were mapped, as
each QTL explains 20.60–38.62% of genotypic variation.

QTL-by-environment interactions (QTL9 E)

Although there are differences in the number and location of sig-
nificant QTL detected across environments, tests for QTL9 E
only detected significant environmental interactions for QTL

Fig. 3 RNA-seq-based single nucleotide polymorphism linkage map of
Brassica rapa. Twelve hundred and seventy-three markers are roughly
evenly distributed across 10 chromosomes. Marker gaps correspond to
centromeres or ancient centromeres, which are areas of low expression.
Additive quantitative trait loci (QTL) and 1.5-LOD support limits are
shown. Positive QTL (with respect to IMB211) are red and negative QTL
are blue. Overlapping 1.5-LOD support limits are interpreted as evidence
for colocalization of QTL. UN, uncrowded; CR, crowded; LW, leaf width;
LL, leaf length; Lmax, maximum estimated size (mm); r, growth rate; d,
growth duration; STP, single-time-point measures of final leaf size (mm);
a, parameter of allometry; b, parameter of allometry; Germ_to_Flr, time
from germination to flowering; Germ_to_bolt; time from germination to
bolting; Bolt_to_Flr, interval between bolting and flowering; Fruit, average
number of good fruit; seed, average number of seed; Amax, photosynthetic
rate (lmol CO2m

�2 s�1); gs, stomatal conductance (mol H2O m�2 s�1);
WUE, water-use efficiency (Amax/gs).
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associated with fitness: fruit (Fig. S3A,B; Table 2) and seed (Figs
S3C–3F; Table 2). The relative paucity of QTL9 E is consistent
with comparatively lower magnitude of G9 E interactions rela-
tive to genotype effects in the ANOVA (Table 1).

Epistatic interactions

We identified epistatic interactions among QTL for leaf model
parameters including LW_Lmax, LWSTP, LL_Lmax, allometry
and phenology (Table 3; Figs S4, S5). Epistatic QTL affecting
the linear leaf and allometry parameters differed from those for
LWSTP (Fig. S4). All of the epistatic QTL, except for a QTL for
UNLW_Lmax on chromosome 9, also have significant additive
effects. In general the effect size of epistatic QTL (1.17 = 14.1%)
was less than additive QTL. One notable exception was the inter-
action between loci on chromosomes 7 and 8, which explained
14.5% of variation in UN_a (Table 3).

Selection analyses

Selection analyses were performed to estimate the strength of
selection on leaf width, length and allometry parameters

independently using linear models and fully balanced quadratic
models; quadratic terms did not improve model fit and are not
reported. Results were also similar between UN (Table 4) and
CR (Table S4) settings, and results for UN are presented. Rela-
tive seed number was used as an estimate of fitness. In the model
for growth curve parameters, LW_r and LW_d were under nega-
tive selection (b0 =�0.38 and �0.39, respectively), and
LW_Lmax was under positive selection (b0 = 0.27). Selection
upon allometry was marginally significant. When the interval
between bolting and flowering was included in linear LWmodels,
LW_r and LW_d were no longer significant, indicating that selec-
tion on these traits was indirect and mediated by strong negative
selection on the interval between bolting and flowering
(b0 =�0.38). Similarly, including phenology in selection models
for allometry removed the marginally significant negative selec-
tion on b, demonstrating that these effects were likely indirect
and mediated by strong positive selection on flowering time
(b0 = 0.48; Table 4).

Discussion

The evolution of organismal diversity is dependent on variation
in the genetic architecture of traits. Trait data are often collected
at a single-time-point without considering developmental differ-
ences among individuals. However, fitness is influenced by the
entirety of organismal ontogeny, and genetic and environmental
factors may affect the process by which a given endpoint is
reached and not just the endpoint itself. We utilized a function
valued trait (FVT) modeling approach to examine the genetic
architecture of leaf development and assess the importance of col-
lecting ontogenetic data. Furthermore, because many aspects of
plant ontogeny are phenotypically plastic (Sultan, 2000; Diggle,
2002; Baker et al., 2014), we examined leaf development in
crowded and uncrowded environments. To explore the potential
importance of leaf development for evolution and crop improve-
ment, we tested for associations between leaf developmental
genetic data and both leaf-level physiological data and whole

Table 2 Marker names for quantitative trait loci (QTL) that have
significant environmental interactions in Brassica rapa recombinant inbred
lines (RILs)

Trait Marker name
F (Df_num,

Df_den) P-value

UN
variance
(%)

CR
variance
(%)

Good
fruit

A03_4610765 F(1,230) = 3.35 P = 0.037 10.20 11.97
A09_14638518 F(1, 232) = 11.1 P = 0.001 13.06 NS
A10_11112220 F(1,232) = 7.12 P = 0.008 12.66 15.47

Seed A03_5429398 F(1,230) = 3.62 P = 0.028 10.00 NS
A03_4610765 F(1,232) = 8.21 P = 0.005 NS 14.77
A10_13413567 F(1,232) = 4.69 P = 0.031 NS 13.01
A10_14464079 F(1,232) = 5.32 P = 0.022 11.63 NS

UN, uncrowded; CR, crowded; NS, not significant.

Table 3 Quantitative trait loci (QTL) with epistatic effects in Brassica rapa recombinant inbred lines (RILs)

Trait Treatment n LOD
Variance
(%) Chromosome

Start
marker

Start
position

QTL
marker

QTL
position

End
marker

End
position

LW_Lmax UN 124 5.1 6.7 6 loc51 54.9 Loc53 56.9 Loc55 58.9
9 17139415 100.1 17382954 101.7 17508299 102.9

LWSTP UN 124 4.3 7.6 5 21765900 61.1 loc63 64.6 22647157 73.1
9 1100290 0.14 490546 3.4 loc8 8.1

LL_Lmax CR 118 3.3 5.8 7 loc39 39.2 12838696 45.7 loc54 54.2
3 16879608 86.7 16926246 88.0 18644298 96.6

118 5.0 8.9 4 loc30 30.1 11531882 33.8 14089896 45.0
9 1100290 0.1 952470 1.4 loc92 92.1

118 1.7 2.8 4 loc30 30.1 11531882 33.8 14089896 45.0
10 10765113 49.1 13413567 58.7 14176461 65.6

Allometry (a) UN 118 7.0 14.5 7 12487828 43.7 12722269 44.5 13060999 46.5
8 20354325 62.2 20903550 67.6 loc73 73.1

Germination to Flowering UN 1.3 1.2 1 10259189 43.8 17216013 50.5 20267483 52.9
3 1519411 7.9 1627346 9.1 loc11 11.1

UN, uncrowded; CR, crowded; LL, leaf length; LW, leaf width; STP, single-time-point measure at final size (mm); _Lmax, estimated final size (mm); a, a
parameter of allometry.
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plant features including circadian rhythms, phenology and
fitness.

From logistic growth curves, we estimated parameters of leaf
development including growth rates, duration and maximum leaf
size (Lmax) as well as allometry parameters (a and b). The strong
positive correlation between our estimates of Lmax and single-
time-point (STP) measures of final leaf size indicate that our
models accurately portray leaf development. However, as a previ-
ous study comparing single-time-point (STP) and FVT estimates
found (Ma et al., 2002), FVT modeling enabled us to detect
additional quantitative trait loci (QTL) that we could not with
STP (in particular multiple QTL for Lmax at the bottom of chro-
mosome 10). Duration (d), was less strongly correlated with STP,
whereas growth rate (r), was negatively correlated with STP; and
the magnitude of these correlations was also reduced in the
crowded (CR) relative to uncrowded (UN) conditions. These
weaker (and for r, negative) correlations indicate that modeling
FVT captures dynamic aspects of developmental genetics that
STP alone does not, and thereby reveals novel genetic controls of
growth that could not be predicted directly from STP. The
allometry parameters, a and b, were likewise uncorrelated with
STP. In support of the view that leaf growth and allometry
parameters are distinct from STP, leaf growth and allometry
parameters often map to genomic regions (QTL) not associated
with STP QTL (Fig. 3).

Leaves exhibit deterministic growth in most eudicots (Bell &
Bryan, 2008) and are the primary pre-flowering photosynthetic
organ of B. rapa. Indeed, we found that leaf growth was finite
and genotype-specific. Additionally, there were genetic trade-offs
between leaf growth rates, duration and final sizes. Although fast-
growing leaves are typically larger than slow-growing leaves
(Ridge et al., 1986; Poorter & Remkes, 1990), we found a strong
negative correlation between leaf growth rates and final sizes

(Figs 2, S1, S2). This negative correlation is driven by duration of
growth: fast-growing leaves stop growing earlier in development
than slow-growing leaves (Figs 2, S1, S2). To explore this rela-
tionship further, we compared our parameters of leaf develop-
ment to genotypic means of leaf-level physiological traits. A
single leaf can be viewed as both a carbon source (by fixing car-
bon via photosynthesis) and a carbon sink (as carbon is used in
structural aspects of leaf growth) (Turgeon, 1989). Typically,
faster growth rates are associated with higher photosynthetic
capacities (Reich et al., 1997; Saied et al., 2003). However, we
observed fast-growing leaves with a lower per-area photosynthetic
capacity (Amax) than larger, slow-growing leaves (Figs. 1, S1, S2).
One mechanistic explanation is that these fast-growing leaves
reached their final size early, and transitioned from carbon sink
to carbon source earlier than slower growing leaves, allowing
them to serve as net carbon sources when integrating across
ontogeny.

Independently of leaf size, leaf shape can influence leaf temper-
ature (Vogel, 2009), and consequently photosynthetic capacity
(Kobza & Edwards, 1987; Lin et al., 2012) and eventual plant
performance. To examine leaf shape, we assumed a simplified
and ovate form (although there is variation in (1) leaf lobes, (2)
petiole wings, and (3) stipules), and utilized a power-law function
to model the allometric relationship between leaf length and
width as an FVT throughout development (Snell, 1892; Schlich-
ting & Pigliucci, 1998). The function describes the line made by
plotting corresponding leaf lengths and leaf widths and is speci-
fied by two parameters, a and b (Eqn 3), which are highly corre-
lated (�0.92 < r <�0.90). In our study species and experimental
settings, we did not see a significant relationship between either a
or b and any leaf-level physiological parameters (Figs 1, S1, S2).
Somewhat unexpectedly, we also observed no significant genetic
correlation between parameters describing ontogenetic allometry
and any of the developmental parameters associated with leaf
length or width (r, d or Lmax) (Figs 1, S1, S2). Consistent this
observation, one quarter of additive allometry QTL did not colo-
calize with any aspect of leaf length or width, and allometry QTL
never colocalized with leaf growth rates or durations (Fig. 2;
Table S3). These counterintuitive results can be explained mathe-
matically and biologically. Throughout development b is influ-
enced by the ratio of LW_r to LL_r. During early development,
LL and LW approach zero and contribute relatively little to b.
During later development, it is the ratio of the rate that LL and
LW approach their maximums that influence b rather than any
individual trait (Notes S1 (Eqns S1–S8)). Biologically this means
that if leaf shapes remain constant as leaf sizes increase, the line
describing allometry will be straight and have a slope of one. If
this were the case, we might expect to see genetic correlations
between a and b and leaf lengths and widths. Instead, leaves of
crowded and uncrowded plants both changed shape as they grew
larger. Consequently the allometric relationship between leaf
length and width is curvilinear, and the correlations between leaf
shape, and individual growth rates, durations and final sizes break
down.

Our results indicate that leaf allometry constitutes a genetically
determined module which is independent from linear leaf

Table 4 Selection analyses for the uncrowded treatment in Brassica rapa
recombinant inbred lines (RILs)

Model Traits
Beta (no
phenology)

Beta (with
phenology)

Length LL_Lmax 0.41*** 0.19*
LL_r �0.08 �0.21
LL_d �0.21 �0.32*
Bolt-to-flower NA �0.41***

Width LW_Lmax 0.27* 0.27**
LW_r �0.38* �0.2
LW_d �0.39* �0.15
Bolt-to-flower NA �0.38***

Allometry
and Width

b �0.14† 0.08
LW_Lmax 0.29** 0.29***
LW_r �0.28† �0.23
LW_d �0.30 �0.26†
flowering NA 0.48***

***, P < 0.001; **, P < 0.01; *, P < 0.05; †, P < 0.1; LL_Lmax, maximum
estimated leaf length; LL_r, leaf length growth rate; LL_d, leaf length
growth duration; bolt-to-flower, the interval between bolting and flower-
ing; LW_Lmax, maximum estimated leaf width; LW_r, leaf width growth
rate; LW_d, leaf width growth duration; b, a parameter of the function
describing the ontogenetic allometric relationship between leaf length and
width.
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developmental parameters as well as single-time-point measures.
In part, this is because allometry model parameters and underly-
ing QTL are associated neither with estimates of leaf size and
growth (Raff & Sly, 2000; Edwards & Weinig, 2011) nor many
of their underlying QTL. In addition, allometry and linear leaf
parameters had strikingly different patterns of correlation with
whole plant estimates of phenology and fitness. Leaf length and
width parameters were never correlated with either time to bolt-
ing or flowering; instead they were genetically correlated with the
interval between bolting and flowering. Parameters describing
allometry had the exact opposite pattern: they were highly geneti-
cally correlated with bolting and flowering, but not with the
interval between bolting and flowering (Figs 1, S1, S2). Alterna-
tive approaches to defining modularity focus on high degrees of
association within modules (von Dassow & Munro, 1999; Bol-
ker, 2000). Indeed, in our study components of allometry are
more highly correlated with each other than with other aspects of
leaf development. Likewise, linear leaf FVT parameters were also
all more highly correlated with each other than with allometry.

Tight integration within modules can be viewed as an evolu-
tionary constraint on traits within that module (Klingenberg,
2010). However, loose genetic associations between modules can
also facilitate evolutionary change and novelty (Ackerly &
Donoghue, 1998; Wagner et al., 2007). In B. rapa, there are
multiple potential advantages to disassociating leaf shape and
size. For instance, narrower leaves may avoid self-shading
(Yocum & McKee, 1970; Reed et al., 1993; Chitwood et al.,
2012). By contrast, shorter, more circular leaves have a smaller
perimeter-to-area ratio and may be relatively protected from
damage that preferentially effects leaf margins such as freezing
(Pr�a�sil & Z�ame�cnı́k, 1998). Perhaps more importantly, leaf shape
may be related to leaf venation (Jones et al., 2009). Because
minor veins are responsible for considerable hydraulic resistance
and leaf margins are far from main veins, leaf margins wither
when exposed to strong winds such as those at our field site
(Yapp, 1912; Nicotra et al., 2011). In fact, we observed dry, dead
leaf margins on many of our leaves. Because allometry and leaf
length and width are genetically independent, it should be possi-
ble to select for a less rounded leaf where leaf margins are in
closer proximity to the midrib and may suffer less from desicca-
tion without affecting leaf length or width, and therefore without
jeopardizing leaf growth rates, sizes or photosynthetic capacity.

In order to more fully understand the genetic architecture
underlying leaf development and whole plant dynamics, we
tested for epistatic effects. Although we found relatively few epi-
static QTL compared to additive QTL, the effects of epistasis
were occasionally quite strong. In particular, the interaction
between QTL for UN_a on chromosomes 7 and 8 explained
14.5% of the total variation in UN_a, or about the same amount
as any individual additive QTL for UN_a (Table S3). Interest-
ingly, although we found epistatic effects for final leaf measures
(STP) and estimates (Lmax), we did not detect any epistatic
effects for aspects of leaf growth or duration (Table 3). Unlike
many species where dominance relationships and epistatic effects
cannot be directly inherited, selfing or biparental inbreeding in
B. rapa allows for direct transmission of beneficial epistatic

interactions, making them a potential target for selection and
crop improvement.

We also tested whether (and which) leaf-level traits were
environmentally sensitive and associated with fitness. Unlike
other studies (Weiner & Thomas, 1992; reviewed in Schmitt
& Wulff, 1993), we found no main effect of treatment.
Instead, we found significant genotype-by-environment interac-
tions for all linear leaf traits and fitness traits, but not parame-
ters of allometry or phenology (Table 1). Although QTL-by-
environment interactions are typically considered common
(reviewed in Des Marais et al., 2013), when we examined the
effect of environment on individual QTL, we found significant
QTL-by-environment interactions only for fitness traits
(Table 2).

In addition to assessing novel aspects of genetic architecture,
FVT approaches are also advantageous for looking at natural
selection, as they can reduce data from many auto-correlated
repeated measures into one (or a few) traits, thereby enabling
selection analyses. We found that r, d and Lmax were under
selection. In particular, selection favored reduced values for the
rate and duration of growth after accounting for selection for
Lmax. For leaf width, selection on rate and duration was medi-
ated by flowering interval, and selection favored a faster repro-
ductive transition from bolting to flowering. Thus, reproductive
developmental rate affects selection on vegetative growth rates
and patterns (r and d). Leaf allometry (b) experienced weak selec-
tion that was again mediated by a reproductive trait – days to
flowering.

Taken together, our results demonstrate that modeling leaf
development reveals novel genetic trade-offs, bivariate associa-
tions and controls for aspects of leaf development. Similar to
other studies, which find that FVT modeling is superior to para-
metric and repeated-measures analyses for QTL mapping (Gris-
wold et al., 2008; Xiong et al., 2011), we conclude that FVT
modeling of developmental trajectories is an improvement upon
single estimates of final organ size. We draw on advantages of
FVT modeling, such as data reduction and novel trait identifica-
tion to uncover developmental modules and estimate selection
on leaf phenotypes. Yet, other features of FVT modeling are rele-
vant to predicting the evolutionary dynamics of complex traits.
The ordered pattern of growth as a function of time allows for
estimation of a continuous genetic (co)variance function (G ) that
describes genetic variance in size and covariances between size at
every pair of time points. G provides increased power to estimate
the effect of selection on population means across generations
(Stinchcombe & Kirkpatrick, 2012). Future avenues of research
include estimating G and utilizing a Bayesian framework to draw
upon the information content of the entire dataset simulta-
neously.
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